evaluate()
Run the evaluation on the dataset with different metrics
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
(Dataset, EvaluationDataset)
|
The dataset in the format of ragas which the metrics will use to score the RAG pipeline with |
required |
metrics
|
list[Metric]
|
List of metrics to use for evaluation. If not provided then ragas will run the evaluation on the best set of metrics to give a complete view. |
None
|
llm
|
Optional[BaseRagasLLM | BaseLanguageModel]
|
The language model to use for the metrics. If not provided then ragas will use
the default language model for metrics which require an LLM. This can we overridden by the llm specified in
the metric level with |
None
|
embeddings
|
Optional[BaseRagasEmbeddings | Embeddings]
|
The embeddings to use for the metrics. If not provided then ragas will use
the default embeddings for metrics which require embeddings. This can we overridden by the embeddings specified in
the metric level with |
None
|
callbacks
|
Callbacks
|
Lifecycle Langchain Callbacks to run during evaluation. Check the langchain documentation for more information. |
None
|
in_ci
|
bool
|
Whether the evaluation is running in CI or not. If set to True then some metrics will be run to increase the reproducability of the evaluations. This will increase the runtime and cost of evaluations. Default is False. |
False
|
run_config
|
RunConfig
|
Configuration for runtime settings like timeout and retries. If not provided, default values are used. |
RunConfig()
|
token_usage_parser
|
Optional[TokenUsageParser]
|
Parser to get the token usage from the LLM result. If not provided then the the cost and total tokens will not be calculated. Default is None. |
None
|
raise_exceptions
|
bool
|
Whether to raise exceptions or not. If set to True then the evaluation will
raise an exception if any of the metrics fail. If set to False then the
evaluation will return |
False
|
column_map
|
dict[str, str]
|
The column names of the dataset to use for evaluation. If the column names of the dataset are different from the default ones then you can provide the mapping as a dictionary here. Example: If the dataset column name is contexts_v1, column_map can be given as {"contexts":"contexts_v1"} |
None
|
show_progress
|
bool
|
Whether to show the progress bar during evaluation. If set to False, the progress bar will be disabled. Default is True. |
True
|
Returns:
Type | Description |
---|---|
Result
|
Result object containing the scores of each metric. You can use this do analysis later. |
Raises:
Type | Description |
---|---|
ValueError
|
if validation fails because the columns required for the metrics are missing or if the columns are of the wrong format. |
Examples:
the basic usage is as follows:
from ragas import evaluate
>>> dataset
Dataset({
features: ['question', 'ground_truth', 'answer', 'contexts'],
num_rows: 30
})
>>> result = evaluate(dataset)
>>> print(result)
{'context_precision': 0.817,
'faithfulness': 0.892,
'answer_relevancy': 0.874}
Source code in src/ragas/evaluation.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|